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A. G. l~onov, *) V. A. Naumov, and 
V. N. Erlikhman 

UDC 621.56 

A model and method are suggested for calculating the cooling and freezing of a rectangular block of  
fish as applied to roto#y freezing units. A Fourier dimensionless heat-conduction equation is formulated 
with allowance for the variable character of the thermophysical properties of  the object to be fi'ozen. 

The presented results of  the calculation carried out bv the finite-difference method are in agreement 
with the experimental data. 

Freezing of foodstuffs is a complex thermophysical process. In refrigeration technology, the most im- 
portant parameter is the freezing time Xfr, which is usually taken to mean the total time of cooling and freezing 
of products to a prescribed temperature. In determining the freezing time, the most widespread use is made of 
a Pianck formula (see, for example, [I]), which is obtained for bodies of a simple shape with constancy of the 
thermophysical properties of the object and substantial assumptions. Subsequently, modifications of this for- 
mula obtained analytically with a smaller number of assumptions were suggested [1-4]. One of the latest solu- 
tions of this kind is given in [4], where allowance is made for the cooling time from the initial temperature to 
a cryoscopic one and of the duration of a phase transition and aftercooling of the frozen object. However, it 
was assumed in [4] that all the thermophysical properties of the object (heat capacity, thermal conductivity, 
specific heat of freezing) and the boundary conditions were constant (otherwise, the problem has no analytical 
solution). 

In [5], the variable character of the thermophysical properties of the frozen object is considered and the 
posed problem is solved numerically. But here generalized relations for determining the freezing time do not 
contain the thermophysical characteristics of the product. 

In the present work, we suggest a model and method for calculating the cooling and freezing of a 
rectangular block of fish as applied to rotory freezing units [6, 7], i.e., for a one-dimensional problem which is 
described by the Fourier equation [8] 

~T 0 ()~ ~T 
nc0 _0xt (1) 

To Eq. (1) we prescribe the following boundary conditions: 
• at the center of the block, the conditions of symmetry 

0I~--X l=~/2 = 0 ,  (2) 

• near the wall, the conditions of the third kind 
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) O T ' ]  = (- 
The initial conditions are T(X, O) = Ti. 
Taking into account that fish in the block consists of  dry substances with density Pl and mass fraction 

wl as well as water  with density 02 and mass  fraction w2 = 1 - Wl, we take the mean density of  the block as 

Pl P2 (4) 
p - - const .  

P l W I  + PeW2 

The portion of  water with mass fraction w22 is nonfreezing (firmly bonded [1]); the other portion w21 is in a 

solution and can be frozen: w21 + w22 = w3. 
The specific heat of  the mixture at T >Tcry (Tory is the cryoscopic temperature) is 

Cli q = WIC 1 + W2C22 , ( 5 )  

where c~ is the specific heat of  the dry substances and c22 is the specific heat of  the water in the liquid state. 
To  find the specific heat o f  the mixture at T < Tcry, we write the enthalpy increment 

dH= tWlQ + W22C22 + W21 [ ( l  -- (0) C22+01C21]} d T -  w21Ldo.).  ( 6 )  

Just as in [1], we calculate the amount  of  frozen-out water: 

,3 

co = l - L r y / r ,  d o  = ( r c r / r - )  d r .  (7) 

Substituting Eq. (7) into Eq. (6), we obtain 

C = q  
dH 

= Cliq -- W21 
dT 

(1 Tcry') 
- T I (c22-  c21) 

Now we introduce the dimensionless heat capacity (at T <  Tcry) 

~'=--=l-w2j I -  ~ +  l= l -w21  
Cliq Cliq T 2 CliqTcry ] 

- -  - L _ C~-~ -- Co I h = - -  

Cliq CliqTcry " 

In order to put heat-conduction equation (1) into dimensionless form, we introduce the dimensionless 
temperature 0 in the following manner  [3]: 

O= T -  Tcry 

r c r y -  Tf 
(8) 

It should be noted that 0 = 0 will correspond to the initial cryoscopic temperature,  while 0 = -1  will 

correspond to the temperature of  the refrigerant• 
The thermal conductivity coefficient is not an additive characteristic and, according to [1], at T <  Tcry 

it can be determined from the empirical  formula 

)~ = m + n / T  . (9) 
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Fig. 1. Time variation in the temperature: 1) at the center of the block ; 
2) at X = 15 mm. T, °C; x, min. 

When T>  Tory, )~ = )~- = const. The dimensionless thermal conductivity coefficient X-= )~/)~ash (when 

T >- Tcry, )~ = l ). 
We substitute Eqs. (7)-(9) into Eq. (1) and after cancellation will have 

_~0 _~l ~o) (10) 
p c ,  iqC • 

Multiplying both sides of Eq. (10) by the square of the block thickness 8 2 and introducing the dimensionless 
coordinate x and time x', we obtain the heat-conduction equation in dimensionless form: 

--=--[~.rJ '  x=- ~'=x------w. (11) 
c OZ" Ox 8 ' PCliqS- 

Although we were able to put the heat-conduction equation into a form not containing similarity num- 
bers, they appear in closing relations (7) and (9) and in the dimensionless boundary conditions 

~/_~x ) (~0~ = 0~8 (12) 
,.=5=0; ~ Ox),~_5 U i ( l + O ° ) '  B i -2 z f i s  h 

Differential equation (11) with boundary conditions (12), as well as with the indicated initial conditions 
and closing relations, is solved numerically by the finite-difference method on an explicit four-point scheme 
[9]: 

0+' ,, 2E : ( 0 -  :) -, ( ' )] --n m --Om n - - 0  --~'m-1/2 On-Om-I  
Cm A ' ~  - 2 + 1/2  m+ l 

(13) 

~,m~+l/2 = 0.5 )~m+l + )~m , )~m-1/2 = 0.5 + ~'m-I , (14) 

where m = 0, 1, 2 . . . . .  Ml; M = M 1 -  1, M is the number of nodes of a difference-grid on half of the block 
thickness; A~ is the difference-grid step along x, x = l /M;  n = O, 1 . . . . .  

From Eq. (14) we can calculate the dimensionless temperature on the (n + 1)th layer using its value on 
the nth temporal layer beginning with m = 1 to M: 

on+l = on, ~'m+l/2 - -  On, - ~ ' m - 1 / 2  O n  - -  0m-1 --m ~ m+ 1 
Lk'¢ C m 
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Fig. 2. Dependence of the dimensionless temperature profiles on time at 
Bi = 1: 1) ~" = 0.2; 2) 0.4; 3) 0.6; 4) 0.8; 5) 1.0; 6) 1,4; 7) 1.6. 

Fig. 3. Time variation in dimensionless temperatures at the center of the 
block: 1) Bi = 1; 2) 2; 3) 10. 

The boundary conditions will be used to evaluate the values of the dimensionless temperature at the 
node on the block surface (m = 0) and at the center of  the block (m = M0: 

n ~+1 ~ 
00+1 "1 - -  Ax Bi /  . ta,,+l = n,+l 

= ' V M I  " M  " 

1 + Ar B i / ~  ~ 

(16) 

In view of the substantial nonlinearity of the problem, the number of  nodes along x must be rather 
large. In the present work, we used the grid with MI = I00 and time A~'/Ar e = 0.1. At larger values of the 
difference-grid steps the calculation results differed noticeably, i.e., the error in the numerical solution in- 
creased considerably. 

To check the adequacy of the model, we compare the calculation results with the experimental data. 
Figure 1 presents the time variation in the temperature at the center of the block and at a distance of 15 mm 
from a freezing plate. The calculation of one variant took no more than 2 min of operation of the processor of 
a Pentium-200 computer. The experimental points [6] were obtained on an ARSA-3-15 pilot-industrial freezing 
installation when operated on Freon-22. The mass of the fish blocks was 11 kg, the mean thickness of the 
block was ~5 = 64 mm, and the Freon temperature, -40°C. According to [1], the values of  the determining 
parameters for codfish were as follows: 14'2 = 0.803; 14,22 = 0.0682; T c r y  = -0.91°C; the empirical coefficients 
in Eq. (9) for the codfish were m = 1.23 and n = 0.58. In the calculations, the initial temperature profile of the 
block was taken to be linear: from +1.5°C on the block edge to +9°C at the center of the block. From Fig. 1 
it is seen that the calculated curves not only qualitatively but also satisfactorily quantitatively describe the dy- 
namics of cooling and freezing of the fish block. The difference between the calculated curves and experimen- 
tal points is probably attributable to the inaccuracy of representation of the variable thermal conductivity 
coefficient by means of empirical formula (9) and to the distinction of the boundary conditions from the theo- 
retical ones, as well as to the one-dimensional model approximation and other factors. 

Figures 2 and 3 present, as an example, the results of computer calculations of the cooling and freezing 
of the fish block at the values of the determining parameters indicated above. The temperature of the refriger- 
ant as in an FGP-25-3 installation [5] was Tr = -62°C, Ti = 19°C; Bi = 1. The time variation in the profiles 
of the dimensionless temperature of the block is shown in Fig. 2. It can be seen that the region adjacent to the 
external boundary is quickly cooled to a temperature below the cryoscopic one (0 < 0); at the center of the 
block, as the temperature attains the cryoscopic temperature, the process of water freezing continues for some 
time (curves 3 and 4). The time variation in the dimensionless temperature at the center of  the block 0 at three 
values of the Biot number is shown in Fig. 3. In all three cases, 0 first attains zero (which in dimensional 
quantities corresponds to the cryoscopic temperature); after this it remains constant for some time and then 
continues to drop. It is seen that an increase in Bi intensifies this process. The results obtained agree with the 
physical meaning of the processes that occur in the cooling and freezing of foodstuffs. 
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Using the obtained dimensionless time of freezing to a prescribed temperature ~'3 (Fig. 3), it is possible 
by formula (11) to calculate the dimensional quantity x3 and the theoretical capacity of the freezing unit, pro- 
ceeding from which one can determine the technological and actual productivity with allowance for cycle and 
extracycle time losses. 

N O T A T I O N  

T, local temperature, T = T(x, "0; X, coordinate along the block thickness (0 < X < 8); x, time; p, den- 
sity; c = c(T), specific heat; ~, = ~(T), coefficient of thermal conductivity; ~5, thickness of the fish block; c~, 
coefficient of heat transfer; Tf, temperature of the refrigerant; To = T(0, x), boundary conditions; T(X, O) = Ti, 
initial conditions; Pt and P2, density of the dry substances and water, respectively; Wh W2 = 1 -- wq, their mass 
fractions; L, specific heat of water freezing; H, enthalpy; co, amount (portion) of the frozen-out water; Bi = 
c~5/2~s h, Biot number; 0, dimensionless temperature. Subscripts: 1, dry substances; 2, water; 22, nonfreezing 
water; 21, water in the solution that can be frozen out; fish, fish. 
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